Regulated gene insertion by steroid-induced ΦC31 integrase
نویسندگان
چکیده
Nonviral integration systems are widely used genetic tools in transgenesis and play increasingly important roles in strategies for therapeutic gene transfer. Methods to efficiently regulate the activity of transposases and site-specific recombinases have important implications for their spatiotemporal regulation in live transgenic animals as well as for studies of their applicability as safe vectors for genetic therapy. In this report, strategies for posttranslational induction of a variety of gene-inserting proteins are investigated. An engineered hormone-binding domain, derived from the human progesterone receptor, hPR891, and specifically recognized by the synthetic steroid mifepristone, is fused to the Sleeping Beauty, Frog Prince, piggyBac and Tol2 transposases as well as to the Flp and PhiC31 recombinases. By analyzing mifepristone-directed inducibility of gene insertion in cultured human cells, efficient posttranslational regulation of the Flp recombinase and the PhiC31 integrase is documented. In addition, fusion of the PhiC31 integrase with the ER(T2) modified estrogen receptor hormone-binding domain results in a protein, which is inducible by a factor of 22-fold and retains 75% of the activity of the wild-type protein. These inducible PhiC31 integrase systems are important new tools in transgenesis and in safety studies of the PhiC31 integrase for gene therapy applications.
منابع مشابه
Sp100 interacts with phage ΦC31 integrase to inhibit its recombination activity.
Phage ΦC31 integrase is a potential vector for the insertion of therapeutic genes into specific sites in the human genome. To understand the mechanism involved in ΦC31 integrase-mediated recombination, it is important to understand the interaction between the integrase and cellular proteins. Using a yeast two-hybrid system with pLexA-ΦC31 integrase as bait, we screened a pB42AD human fetal brai...
متن کاملA possible way that φC31 integrase regulates the recombination direction.
φC31 integrase encoded by Streptomyces phage can mediate site-specific recombination between phage and host genomes. The recombination direction is generally considered to be accurately regulated, but the regulatory mechanisms involved are still unclear. Recently, some hyperactive mutants of φC31 integrase that can bypass the regulatory steps have been isolated and extensively studied. A putati...
متن کاملLong-term in vivo gene expression in mouse kidney using φC31 integrase and electroporation.
BACKGROUND Achieving long-term gene expression in kidney will be beneficial for gene therapy of renal and congenital diseases, genetic studies constructing animal disease models, and the functional analysis of disease-related genes. PURPOSE The purpose of this study was to develop an in vivo long-term gene expression system in murine kidney using φC31 integrase. METHODS Gene expression in c...
متن کاملGeneration of induced pluripotent stem cells using site-specific integration with phage integrase.
To date, a large number of reports have described reprogramming many somatic cell types into induced pluripotent stem (iPS) cells, using different numbers of transcription factors and devising alternate methods of introducing the transcription factor genes or proteins into the somatic cells. Here, we describe a method using bacteriophage ΦC31 integrase to reprogram mouse embryonic fibroblasts a...
متن کاملSite-specific integration with bacteriophage ΦC31 integrase.
Few nonviral techniques exist for efficient and stable eukaryotic gene transfer and fewer still are broadly useful in both cell culture and whole-organism applications. C31 integrase, a site-specific bacteriophage recombinase, is able to catalyze chromosomal transgene insertion under a diverse range of experimental and therapeutic conditions. The enzyme recognizes and catalyzes unidirectional r...
متن کامل